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Abstract

This study analyzed post-disaster population changes in Fukushima Prefecture from 2010 to 2020,
using spatial analysis and econometric methods. Significant population decline occurred,
particularly in designated evacuation zones, between 2010 and 2015. While some population
recovery was seen in these areas after evacuation orders were lifted (2015-2020), overall levels
remained substantially below 2010 figures. Widespread aging was also noted across the prefecture,
often distinct from disaster impacts. Econometric findings showed that increasing average age
had a negative effect on population. Crucially, indicators of social infrastructure, specifically the
number of high schools and hospitals, were positively associated with population levels,
suggesting they aid retention. Municipal fiscal capacity did not show a significant relationship
with population changes. The study highlights ongoing challenges for social inclusion and

suggests infrastructure investment is vital for revitalization.



Introduction

Social inclusion is generally understood as a concept that focuses on communities, groups, and
individuals, examining the extent and quality of their participation in and access to the
fundamental functions and relationships of society (Alex, 2015). In contemporary Japan, a rapid
population decline and accelerated aging are projected in the coming decades (Development Bank
of Japan, 2015), increasing the risk of isolation and exclusion among vulnerable groups and
minorities. This underscores the necessity of strategic responses tailored to the distinct
demographic structures and social contexts of each region in order to achieve social inclusion.
Building an inclusive society is therefore considered a critical policy challenge.

In this study, Fukushima Prefecture was selected as a focal case for empirical
investigation into the construction of an inclusive society. Since the Great East Japan Earthquake
and the accident at the Fukushima Daiichi Nuclear Power Plant in 2011, Fukushima has
experienced a dramatic outflow of population and a fragmentation of its local communities.
Outmigration has been especially prominent among the younger and child-rearing populations,
leading to a rapid rise in the aging rate. While return policies have been promoted as part of
regional recovery efforts, certain areas remain designated as difficult-to-return zones with
continued restrictions on residence. Consequently, the challenge of achieving social inclusion in
regional revitalization remains acute.

In this fiscal year, as a preliminary step in our analysis, we conducted a review of prior
research, developed a GIS-based population dynamics database, and carried out econometric
analyses. Based on these efforts, we explored the challenges of social inclusion in disaster-
affected areas, with a particular focus on the demographic realities revealed through spatial

population trends.



Studies on Social Inclusion in the Context of the Fukushima Disaster

In Fukushima Prefecture, the Great East Japan Earthquake and the accident at the
Fukushima Daiichi Nuclear Power Plant in 2011 had a profoundly serious impact on local
communities. These events have significantly influenced demographic trends, particularly
accelerating population outflow and depopulation (Abe, 2015). Following the disaster, a large
number of people, especially young and child-rearing households, relocated outside the region
due to the designation of wide areas as evacuation zones. In some areas, residents have continued
to face long-term restrictions on returning (Tanaka, 2019). These conditions have exacerbated
pre-existing trends of aging and population decline, threatening the sustainability of local
communities and raising concerns about social isolation, infrastructure deterioration, and the
hollowing-out of community functions.

Endo et al. (2014) conducted a survey among residents who were forced to relocate to
temporary housing from evacuation-designated areas. They reported not only the difficulties of
life in temporary housing but also the complexity of decision-making regarding return. Notably,
about 30% of respondents in 2013 stated that they "would like to return but are undecided,"
highlighting how prolonged evacuation and uncertainty about the future seriously affect residents'
willingness to return. According to Tanaka (2019), prolonged displacement reduces residents’
desire to return and hinders the rebuilding of local social relationships, ultimately slowing actual
return behavior. In areas where evacuation orders were lifted within 3.5 years, more than 50% of
households had returned. In contrast, in areas where the orders remained for over 5 years, the
return rate was still around 10% even 2.5 years after the lifting, indicating a substantial difference.
This suggests that the temporal dimension is a critical factor in recovery policy. In addition to
decontamination progress, policy responses must also address residents’ intentions and the loss
of social ties.

Another key institutional issue related to the Fukushima accident is the compensation

scheme for affected individuals. In particular, the compensation payments designed and



implemented primarily by the national government and TEPCO have been positioned as a
foundational means of supporting both individual livelihood recovery and regional reconstruction
(TEPCO Holdings, 2021). This scheme is based on the Act on Compensation for Nuclear Damage
and has raised policy and legal debates concerning funding and the scope of compensation (Kubo,
2011; Sawa et al., 2012)1.

Economic compensation plays a critical role in disaster recovery, but determining the
appropriate amount and scope of compensation is highly challenging. Several studies report that
the compensation process itself may generate perceptions of unfairness, foster social comparison
and division, and negatively affect mental health (Brooks et al., 2024). Moreover, even when
monetary compensation is provided, it can only partially substitute for non-economic losses and
burdens. Critics argue that economic means cannot adequately address the loss of non-material
values and resources (Tanaka, 2016; Teranishi, 2016; Yokemoto, 2015). Nevertheless, Endo et al.
(2014) found that, in practice, many affected residents ultimately expressed the strongest desire
for monetary compensation. This reflects the inherent difficulty of designing and implementing

effective compensation policies in disaster contexts.

1 According to a 2013 report by the Ministry of Education, Culture, Sports, Science and
Technology, the average compensation paid by TEPCO to a model household of four in the
difficult-to-return zones was ¥48.3 million (excluding property other than household
belongings). Furthermore, as of March 2024, the total amount of compensation required had

reached ¥13.4179 trillion (TEPCO Holdings, 2021).



Construction for Spatial/Statistical Data and Methods of Statistical Analysis

This study aims to quantitatively capture the socioeconomic changes in Fukushima Prefecture
following the Great East Japan Earthquake by constructing spatial data on demographic changes
from 2010 to 2020 and conducting analyses using spatial statistics and econometric methods.
Specifically, an annual municipality-level dataset was developed by integrating data from the
Resident Registration Migration Report (Statistics Bureau of Japan, 2025), the Population Census
(Statistics Bureau of Japan, 2025), and the National Land Numerical Information (National
Spatial Planning and Regional Policy Bureau, MLIT, 2025), with added spatial attributes. Key
demographic variables analyzed include population density, in-migration and out-migration,
aging rate, and mortality rate. For spatial data processing and computation of spatial statistics,
ArcGIS Pro 10.8 (Esri, Inc., 2024) was used.

The utility of incorporating geographical context in demographic analysis has been
widely reported in prior studies. For example, Pregi et al. (2024) analyzed municipality-level
migration data in Slovakia using Global Moran’s I and Getis-Ord Gi* statistics, demonstrating
that population movement is not spatially random but tends to concentrate in specific areas. This
indicates the effectiveness of spatial statistics in capturing the spatial structure of population
mobility. Tamura et al. (2017), using 500-meter mesh population data across Japan, found a
significant positive spatial autocorrelation between population growth rates and the population
density of neighboring areas. Their study suggests the utility of spatially explicit models in
explaining broad demographic patterns that conventional gravity models may fail to capture.
Demographic indicators such as population density and migration flows are thus expected to show
statistical correlations among geographically proximate areas.

Based on these insights, the present study examined post-disaster population changes in
Fukushima by integrating spatial statistical analysis with dynamic panel econometrics. Focusing
on local spatial autocorrelation, the study employed the Getis-Ord Gi* statistic (Ord and Getis,

1995) to detect localized clusters of population increase or decline across contiguous



municipalities. This allowed for the visualization and quantification of spatial clustering in
population dynamics—namely, the identification of demographic hotspots and coldspots—thus
enabling the identification of geographically continuous patterns of demographic concentration.

The Gi* statistics are defined as follows:
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Here, w;; represents the spatial weight matrix, which assigns values based on spatial proximity

between municipalities { and j. It is defined either as the inverse of the distance between the
two municipalities or as 1 if the two municipalities fall within a defined threshold distance, and 0
otherwise. In this study, the spatial weight matrix assigns a value of 1 if the distance between two
municipalities is within the average nearest neighbor distance, and 0 otherwise. The average
nearest neighbor’s distance is calculated as the mean distance between the centroid of each
municipality and its nearest neighbor across all municipalities. Municipalities whose distance
from their nearest neighbor exceeds the average by more than three standard deviations are treated

as spatial outliers and excluded from the calculation. X; denotes the variable of interest for

municipality j, such as population density. S represents the standard deviation, and n the
sample size.

The Gi* statistic is standardized so that, under the null hypothesis of no spatial
autocorrelation, it follows a normal distribution. Therefore, it allows for hypothesis testing using
Z-values. A positive Gi* value indicates significant positive spatial autocorrelation among high
values (i.e., a hotspot), whereas a negative Gi* value indicates significant positive spatial
autocorrelation among low values (i.e., a cold spot). Based on these results, we can identify

statistically significant clusters of municipalities with high population density (hotspots) and



those with low population density (cold spots). In this study, we calculated these values using the
Optimized Hot Spot Analysis tool in ArcGIS Pro (Esri, Inc., 2023).

Finally, we conducted a quantitative analysis using panel data from 2010 to 2020 at the
municipality level to examine the relationship between population change and other statistical
indicators. For this econometric analysis, we employed a dynamic Generalized Method of
Moments (GMM) estimator using lagged population as an explanatory variable, allowing us to
account for temporal dynamics.

The methodological contribution of this study lies in applying localized hotspot analysis
that incorporates spatial autocorrelation, thereby revealing interdependencies and spatial patterns
across regions that would likely be overlooked in non-spatial models. Spatial statistical analysis
is not merely a visual aid; it offers a theoretical and empirical framework to understand how
geographic proximity structurally affects demographic dynamics. As such, it holds practical

implications for post-disaster regional reconstruction and policy formulation.



Analysis of Demographic Dynamics and Spatial Distribution

Figure 1 presents the population density of municipalities (per 0.1km?) in Fukushima Prefecture
from 2010 to 2020, based on the Population Census rather than the Resident Registration
Migration Report. In the figure, the yellow dot indicates the location of the Fukushima Prefectural
Government, and the red dot indicates the Fukushima nuclear power plant (with the northernmost
plant being Fukushima Daiichi).

Unlike the Resident Registration data, which is based on reported residential addresses in
the official registry, the Population Census is based on where people were actually living at the
time of the survey, as reported in questionnaires. While the Resident Registration allows tracking
of migration by recording the origin and destination municipalities, it cannot capture changes if
evacuees did not officially update their residence, even if their area was under an evacuation order
during the observation period. In cases like this, where sudden large-scale population movements
occurred without administrative procedures due to disaster-related evacuation, it is necessary to
supplement registry data with survey-based sources like the Population Census, despite
limitations such as lower frequency of data collection.

As of 2010, the mountainous southwestern areas were already experiencing low
population density and progressing depopulation. While depopulation continued in these rural
areas, significant declines in population density were also observed—statistically and visibly—
around the Fukushima Daiichi Nuclear Power Plant and in the northwestern area by 2015 and
2020. Notably, in 2015, data could not be obtained for several municipalities designated as
evacuation or difficult-to-return zones at that time, including Namie, Futaba, Okuma, and
Tomioka (see Figure 2). Even in 2020, no official population data were available for Futaba,
where the nuclear power plant is located.

The evacuation zones covered a wide range of coastal municipalities. The timing of
evacuation order lifts varied by region, with the earliest being in April 2014 for Tamura City—

three years after the disaster. In the figure, evacuation orders were lifted in parts of Tomioka,



Okuma, and Futaba in March 2020. The full evacuation order for all of Futaba was not lifted until
August 30, 2022, under the Special Measures Act for the Reconstruction and Revitalization of
Fukushima (Futaba Town, 2022). These areas required more than eight years before restrictions
were removed. As Tanaka (2019) notes, regions with long-term evacuation orders have seen
persistently low return rates, suggesting that prolonged restrictions significantly influence
residents' decisions about returning. These findings indicate the need for not only physical
infrastructure reconstruction but also comprehensive recovery policies that address social and

psychological dimensions.
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Figure 1. Population Density (2010-2020)
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Figure 2. Evacuation Zones and Population/Number of Households by Area (Source: Ministry

of Economy, Trade and Industry, 2020)



Next, Figure 3 illustrates the spatial distribution of ambient radiation dose rates measured
at one meter above ground level as of April 2011, based on data released by the Japan Atomic
Energy Agency (2018). The red lines in the figure indicate municipal boundaries. In the figure,
darker red areas indicate higher radiation levels. Elevated dose rates are observed around the
Fukushima Daiichi Nuclear Power Plant and extend northwest from the plant. The distribution
also stretches southwest along the flatlands (Nakadori region) between the surrounding mountain
ranges and the Abukuma Highlands. In contrast, areas west of Fukushima City are largely shielded
by the Ou Mountains, resulting in significantly lower dose rates across nearly the entire region.
This figure visually captures the geographic unevenness of radiation levels observed immediately
after the Fukushima Daiichi accident. It serves as important reference material for understanding
the spatial consistency between radiation dispersion and the evacuation zones that were
designated in response. These evacuation orders may have played a significant role in shaping

subsequent demographic changes in the affected areas.
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Figure 3. Spatial Distribution of Ambient Radiation Dose Rates (as of April 2011, Source: Japan
Atomic Energy Agency [2018]; created by the authors based on mesh survey data from

Fukushima Prefecture’s Environmental Radiation Monitoring)



Figure 4 shows changes in population based on Population Census data, while Figure 5
presents the results of a hotspot analysis on population change rates. As seen in Figure 4, from
2010 to 2015, significant population decline is observed in and around the evacuation zones.
Municipalities showing particularly notable population changes include Iitate Village,
Minamisoma City, Katsurao Village, Kawamata Town, Kawauchi Village, Naraha Town, and
Hirono Town. Except for Hirono, these municipalities are statistically identified as coldspots
(Figure 5, in blue), meaning that low values are spatially clustered with statistical significance.

By contrast, from 2015 to 2020—after the evacuation orders were lifted—many of these
coldspot municipalities experienced population increases. This is also confirmed by their
identification as hotspots, where high values are spatially clustered. For example, between 2010
and 2015, population declined by 99.34% in Ilitate, 98.82% in Katsurao, and 18.5% in
Minamisoma. Between 2015 and 2020, population growth rates were 3,114% in litate, 2,233% in
Katsurao, and 2.9% in Minamisoma. However, when looking at net population change from 2010
to 2020, litate saw a 78.8% decline, Katsurao 72.5%, and Minamisoma 16.8%. These figures
show that the recovery in the latter period was limited and did not return to pre-disaster levels.

Kawamata Town, which was not entirely designated as an evacuation zone, experienced
a less severe population decline from 2010 to 2015 compared to municipalities closer to the
Fukushima Daiichi Nuclear Power Plant. However, no population recovery occurred between
2015 and 2020, and further decline was recorded (Figure 4). This indicates that even partially
designated evacuation areas experienced significant long-term population decline.

In Figure 4, some areas lack population change data for the 20102015 period. These are
difficult-to-return zones, where residential activities were restricted in principle (Reconstruction
Agency, 2012). The absence of data implies nearly a 100% population loss, indicating the most
severe depopulation. In addition to local effects, Fukushima Prefecture as a whole has shown a
declining population trend. This may reflect both pre-existing aging and low birthrate trends and

the broader demographic impact of the disaster.



On the other hand, the data reveal two municipalities—Otama Village and Nishigo
Village—that experienced population growth. These municipalities share several common
features: strong child-rearing support policies, rich natural environments, and convenient
transportation access. Otama Village implemented free childcare services, subsidies for school
lunch fees, free medical care for children, and childbirth and child-rearing grants. Nishigo Village
also strengthened welfare policies, including medical expense subsidies for children (Otama
Village, 2025; Nishigo Village, 2025). Located at the foot of Mt. Adatara and the Nasu Mountain
Range, respectively, and adjacent to major cities such as Koriyama and Shirakawa with access to
expressways and Shinkansen stations, these municipalities may have achieved unique

demographic trends due to their policy successes and geographical advantages.
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To examine whether municipal revenue is associated with demographic trends, Figure 6
compares the fiscal conditions across regions using per capita general revenue—calculated by
dividing total general municipal revenue by population—as an indicator. While this measure can
become unstable in areas where evacuation orders caused sharp population declines, the total
general revenue includes tax income, local allocation tax grants, and subsidies, making it a useful
proxy for evaluating the financial capacity of local governments.

Notably, municipalities hosting nuclear power plants show significantly higher per capita
revenue due to special grants provided under the so-called “Three Power Source Development
Laws” (Federation of Electric Power Companies of Japan, 2025), reflecting a unique institutional
background that differs from typical local fiscal systems?.

Importantly, even in areas with high per capita revenue, there is no clear evidence of
positive demographic effects such as population growth or increased immigration (see Appendix
Figures 1 and 2). Instead, factors such as prolonged evacuation and the presence of difficult-to-
return zones have exerted strong outward migration pressures. This suggests that abundant fiscal
resources may not automatically lead to population retention or attraction.

Future analysis should focus on how these financial resources are allocated—specifically, which
policy measures they support—and whether they contribute effectively to residents’ well-being
and the reconstruction of local communities. A more detailed and quantitative evaluation of these

outcomes is required.

2 Appendix Figure 3 shows a fiscal index illustrating the ratio of revenue to expenditure in local

governments.
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Considerations on Well-being Based on Spatial Data

We attempt to assess regional social inclusion and well-being in relation to demographic dynamics.
However, the concepts of inclusion and well-being are multidimensional, consisting of
components such as subjective well-being, sense of community belonging, and political
participation. Micro-level data on these elements are extremely limited. In disaster-affected areas
in particular, data collection is hindered by practical difficulties and sampling bias. Therefore, this
study uses the number of deaths per capita (mortality rate) as a proxy variable.

Previous research has considered mortality rates as outcomes reflecting social support,
poverty at the household and community levels, discrimination, and psychological distress or
despair (Frandenberg et al., 2020; Case et al., 2022; Galea et al., 2011). These studies suggest that
long-term health risks are influenced by social isolation, economic hardship, and the absence of
support networks. For instance, Frandenberg et al. (2020) used more than ten years of longitudinal
data to analyze mortality risks in Aceh, Indonesia, following the 2004 Indian Ocean tsunami. They
found that mortality was significantly higher among elderly men with poor mental health and
women who had lost their spouses, indicating that the breakdown of family and social networks
has a serious impact on health outcomes. In contrast, Shigemoto et al. (2020) found that in areas
affected by Hurricane ke in the United States, psychological quality of life was significantly
higher in communities with strong social cohesion, such as mutual trust and support among
neighbors. This underscores the important role of community rebuilding and cohesion in
psychological recovery after disasters, beyond institutional support alone.

On the other hand, demographic changes involving evacuation and relocation may also
alter the age and household composition of communities, thereby affecting local mortality rates.
Thus, while mortality cannot fully serve as a proxy for well-being, it can still offer meaningful
insight in the absence of more comprehensive indicators—particularly as it reflects access to
healthcare and social support. In our analysis, we also examined age distribution to account for

compositional effects on mortality. In addition, we conducted econometric analysis using



population change as the dependent variable and age structure as a control, drawing on available
official statistical data to explore regional characteristics in the post-disaster context.

Figure 7 illustrates the spatial distribution of mortality rates (annual deaths per capita). In
2010, relatively high mortality was observed in the inland western areas of the prefecture. By
2015 and 2020, mortality rates had increased around the evacuation zones, likely linked to the
sharp declines in resident population in those areas. These shifts may reflect broader changes in
the social environment of disaster-affected regions.

Figure 8 presents the results of a hotspot analysis of mortality using the Getis-Ord Gi*
statistic. In 2010, statistically significant positive spatial autocorrelation in mortality was
observed in inland municipalities west of the Tohoku Shinkansen line—indicating hotspots in
mountainous areas. After 2015, however, these hotspots shifted toward coastal municipalities
adjacent to the evacuation zones, suggesting a transformation in the spatial structure of mortality
risk. This shift appears to reflect demographic changes around the evacuation zones, rather than
improvements in mortality in western areas.

Further insights can be gained by examining age distribution, as shown in Figures 9 and
10. High levels of ageing are not limited to areas near evacuation zones. Rather, the spatial pattern
of aging is consistent across the study period: hotspots of aging are found west of the Aizu region
(Figure 10), while areas along the Nakadori—including the Tohoku Expressway and Shinkansen
line—tend to be coldspots. Between 2010 and 2020, the average age increased in nearly all
municipalities except Nishigo Village, though the spatial distribution of age remained largely
unchanged.

These findings suggest that changes in population and mortality in disaster-affected areas
are not solely attributable to age structure. Instead, a variety of factors—including access to
infrastructure, healthcare resources, social inclusion, and systems for daily living support—may

influence regional disparities. Further detailed investigation is warranted.
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Econometric Analysis of Population Using Dynamic GMM

Finally, this section presents the results of a quantitative analysis examining the relationship
between population change and other socioeconomic variables, using municipality-level panel
data from 2010 to 2020. Table 1 shows the results of a Generalized Method of Moments (GMM)
estimation, with population as the dependent variable and various socioeconomic and
infrastructure-related variables as explanatory factors. The key findings are summarized below.

First, the coefficient for lagged population is —1.83 (p = 0.028), indicating a statistically
significant negative effect. This suggests that municipalities with larger populations in the
previous period tend to experience slower population growth in the following period. This may
reflect stagnation in urban population growth or population increases in smaller municipalities.
The coefficient for average age is —0.14 (p = 0.035), which is also statistically significant,
suggesting that aging communities are more likely to experience population decline. This likely
reflects population decreases due to lower birth rates and natural demographic decline.

In contrast, the fiscal capacity index shows a coefficient of —0.38 (p = 0.778), which is
not statistically significant. This implies no clear relationship between a municipality’s financial
strength and short-term population changes. At least in this study, favorable fiscal conditions do
not appear to directly influence residential preferences or migration of younger populations.
Similarly, cultivated land areas show a small coefficient and a high p-value (p = 0.453), indicating
no significant relationship between farmland area and population change.

Regarding infrastructure, the number of high schools (coefficient = 1.50, p = 0.036) and
the number of hospitals (coefficient = 2.65, p = 0.006) both show statistically significant positive
effects. Given the overall aging trend in Fukushima Prefecture, it is possible that well-developed
educational and medical infrastructure contributed to population retention and slowed population
decline.

Overall, the estimation results suggest that prior population levels and aging are major

determinants of demographic change, while educational and healthcare infrastructure show a



positive association with population maintenance. In contrast, fiscal indicators and agricultural
resources do not appear to be significantly associated with population dynamics in the short term.
Although this analysis is limited to municipality-level socioeconomic variables and is based on
regression estimates—thus not establishing causal relationships—it implies that fiscal capacity
alone may not have a direct effect, whereas investments in education and healthcare facilities

could be more effective in mitigating population decline.

Table 1. Result for GMM

Coef. Std. P-value

Lagged Population -1.83 0.83 0.028
Average Age -0.14 0.07 0.035
Fiscal Capacity Index

-0.38 1.34 0.778
(Municipal Finance)
Cultivated Land Area (ha) 0.00 0.00 0.453
Number of High Schools 1.50 0.72 0.036
Number of Hospitals 2.65 0.96 0.006

Constant 7.18 3.66 0.049




Conclusion

This study serves as a first step in analyzing social inclusion by focusing on Fukushima Prefecture.
It involved a review of prior research, the construction of a GIS-based demographic database, and
econometric analyses to examine challenges related to social inclusion and demographic
dynamics.

First, in the context of post-disaster recovery, economic compensation is positioned as a
critical policy instrument. However, determining the amount and scope of compensation is highly
complex. Research has shown that the compensation process itself can generate perceptions of
unfairness, social comparison, and division, negatively affecting mental health. Even when
monetary compensation is provided, it cannot fully address the loss of non-material resources and
values. Nonetheless, prior studies have pointed out that monetary compensation tends to be the
most widely requested form of support among affected residents, revealing a policy dilemma.

Building on these findings, this study analyzed regional demographic patterns using
spatial statistical methods, specifically the Getis-Ord Gi* statistic to identify spatial
autocorrelation. The distribution of geographic clusters (hotspots and coldspots) indicated
statistically significant population decline and, to some extent, recovery in evacuation zones.
However, overall population levels have not returned to their pre-disaster levels. In 2010, high
mortality hotspots were concentrated in the aging inland western region. By 2015, these clusters
had shifted to coastal areas adjacent to the evacuation zones. This change suggests significant
population decline and compositional shifts in these areas. Meanwhile, the spatial distribution of
aging remained largely unchanged before and after the disaster, with aging hotspots consistently
concentrated west of the Aizu region. This implies that aging is driven more by structural and
geographic factors than by disaster-related spatial relocation.

The analysis also suggests that, beyond aging, other factors—such as physical infrastructure,
access to healthcare, and the inclusiveness of local support systems—may have contributed to

elevated mortality rates.



Finally, the econometric analysis employed a dynamic GMM model with population as
the dependent variable to examine relationships with prior population levels, aging, and social
infrastructure. The estimation results showed a significant negative effect of lagged population,
indicating a convergence tendency in population levels. Increases in average age had a significant
negative effect on population, reflecting demographic decline through natural decrease. In
contrast, indicators of social infrastructure, such as the number of hospitals and high schools, had
a positive and statistically significant association with population levels, suggesting their
contribution to population retention. However, fiscal indicators did not show statistically
significant associations.

In Fukushima's disaster-affected areas, major shifts in population dynamics were
observed. Before 2010, aging and depopulation in mountainous areas were already pressing issues.
These challenges remained unresolved, while new challenges emerged in evacuation-designated
zones. Prior research has shown that direct financial assistance can sometimes generate conflict
and that community connectedness—an essential aspect of inclusion—is positively associated
with mental health. This study similarly suggests that fiscal autonomy or surplus alone does not
necessarily influence population growth or reductions in mortality. Instead, the appropriate
allocation of healthcare and educational infrastructure, along with social support systems, is likely
to play a key role in maintaining population and revitalizing communities in the post-disaster

context.
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